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Abstract

Cerebral small vessel disease (SVD) comprises various pathological processes

affecting small brain vessels and damaging white and grey matter. In this pa-

per, we propose a framework comprising region of interest sampling, dynamic

spectral and texture description, functional principal component analysis, and

statistical analysis to study exogenous contrast agent distribution over time in

various brain regions in patients with recent mild stroke and SVD features.We

compared our results against current semi-quantitative surrogates of dysfunc-

tion such as signal enhancement area and slope. Biological sex, stroke lesion

type and overall burden of white matter hyperintensities (WMH) were signif-

icant predictors of intensity, spectral, and texture features extracted from the

ventricular region (p-value < 0.05), explaining between a fifth and a fourth of

the data variance (0.20 ≤ Adj.R2 ≤ 0.25). We observed that spectral feature

reflected more the dysfunction compared to other descriptors since the over-

all WMH burden explained consistently the power spectra variability in blood

vessels, cerebrospinal fluid, deep grey matter and white matter. Our prelimi-

nary results show the potential of the framework for the analysis of dynamic
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contrast-enhanced brain magnetic resonance imaging acquisitions in SVD since

significant variation in our metrics was related to the burden of SVD features.

Therefore, our proposal may increase sensitivity to detect subtle features of

small vessel dysfunction. A public version of the code will be released on our

research website.

Keywords: Dynamic descriptors, Principal component analysis, Dynamic

brain magnetic resonance image, Cerebral small vessel disease

1. Introduction

Cerebral small vessel disease (SVD) encapsulates multiple pathological pro-

cesses disrupting the optimum functioning of perforating cerebral arterioles,

capillaries, and some venules, resulting in grey matter (GM) and white matter

(WM) damage [1, 2, 3]. SVD is a serious problem causing between 20% to 25%5

of strokes, up to 45% of dementias, and substantial cognitive, psychiatric, and

physical disabilities. At a global scale, SVD may be leading to between three

and four million new cases of stroke [4] and 16 million new cases of dementia

per year1 [3]. Despite being a worldwide matter and governmental priority,

little is known about its cause(s) since much of SVD is clinically silent and10

late [1, 4]. Therefore, efforts for understanding the pathophysiological mecha-

nisms surrounding SVD and developing techniques to characterise this disease

are of global impact.

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is com-

monly used to investigate endothelial dysfunction, a pathophysiological com-15

ponent thought to be associated with the SVD pathogenesis, [6] as it per-

mits detecting leakage in tissue and cerebrospinal fluid (CSF) spaces thought

to be caused by an impaired blood-brain barrier (BBB) or blood-CSF bar-

rier [7, 8, 9].In this imaging modality, a series of acquisitions are taken before

and after injecting a Gadolinium-based contrast agent intravenously to image20

1Approximately 16 million according to figures presented in [4], but possibly 22.5 million

following the latest World Health Organisation report on dementia [5].
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its distribution through brain tissues over time. The contrast agent causes the

relaxation time of water molecules to decrease in T1w. Therefore, its accumu-

lation in the extracellular extravascular space with increased BBB impairment

leads to increased signal enhancement.

In a recent work [10], changes in local signal variations in tissue and CSF cav-25

ities were quantitatively measured in pre- and post-contrast study and showed

to vary with increased overall SVD and white matter hyperintensity (WMH)

burden. In this work, we aim to study signal intensity fluctuation on the entire

DCE-MRI sequence using established computer vision descriptors to determine

whether specific variation patterns relate to the health of the patient and their30

suitability for acting as a surrogate measure of small vessel impairment.

We consider texture and spectral descriptors. Textures, which encode lo-

cal signal changes within a region of interest, have been successfully used to

characterise WMH in T2 FLAIR scans [11]; study pre- vs post-contrast differ-

ences in small vessel disease [10]; and classify breast lesions into benign and35

malignant, predict chemotherapy response, and diagnose prostate cancer [12] in

DCE-MRI. Power spectra, the strength of frequency components into the overall

signal, have been successfully applied in dynamic susceptibility contrast MRI to

characterise neurophysiological and hemodynamic patterns of Alzheimer’s dis-

ease [13], detect and characterise oscillations in blood oxygen level-dependent40

imaging reflecting network connectivity [14], and discern between conduct dis-

order and healthy subjects from resting functional MRI acquisitions [15]. We

hypothesise that the application of these computer vision descriptors to DCE-

MRI scans can identify tissue differences in brain regions that relate to the

burden of SVD features.45

We propose a framework to study contrast signal-time trajectory in healthy

and pathological brain regions in DCE-MRI acquisitions. The proposal com-

prises region of interest sampling, dynamic texture and spatial spectral descrip-

tion, functional principal component analysis, and statistical group comparison

and linear regression. The contributions of this work are: (i) we introduce a50

fully functional framework to analyse DCE-MRI acquisitions based on dynamic
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Figure 1: Scheme of our processing pipeline. The inputs are the DCE-MRI sequences (1).

Initially, we process each case by sampling all regions of interest using an anatomically-relevant

template (2), describing local signal variations in regions of interest using descriptors (3).

Subsequently, we study the dynamic descriptors using functional principal component analysis

(4) and statistical analysis (5). ROI: region of interest. FPCA: functional principal component

analysis. T1, ..., TTP : each time point of the DCE-MRIs. Subject1,..., SubjectP : each

patient in the cohort. ROI1,...,ROIR : each region of interest.

spectral and texture descriptors and (ii) we show an application of our frame-

work to the study of DCE-MRI signals of a cohort (n = 42) with a wide range

of SVD burden.

2. Materials and methods55

The pipeline consists of four steps, as shown in Fig. 1. First, we segmented

all regions of interest for each patient in the cohort. Second, we described sig-

nals using dynamic spectral and texture descriptors. Third, we examined the

resulting descriptions using a functional principal component analysis (FPCA).

Fourth, we studied whether scores of the primary mode of variation were asso-60

ciated with any of the clinical variables. Details of each step are provided in the

following sections.
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2.1. Subjects and clinical variables

We used data from a prospective study of patients with recent mild stroke

and SVD features (n = 42 subjects, 12 women, 19 lacunar stroke). Of 201 in65

the original study, we selected 42 on the basis of considering only high-quality

scans (qualitative assessment of truncation and motion artefacts) and represent-

ing a wide spectrum of SVD feature burden, stroke lesion size, and index stroke

lesion type (i.e. cortical vs lacunar). The sample clinical characteristics have

been published previously [16, 17]; those relevant to this work are condensed70

in Table 1. The baseline hypertension (y/n) defined as a previous history of

hypertension, or hypertension diagnosed at presented of stroke, age, and per-

centages of WMH in intracranial volume were retrieved from the study database.

Additionally, we considered a visual clinical rating recorded at inclusion, total

SVD [18] score, to account for four neuroimaging features of the SVD (lacunes,75

microbleeds, perivascular spaces, and WMH).

Imaging was carried out on a 1.5T MRI scanner (Signa HDxt, General Elec-

tric, Milwaukee, WI) using an eight-channel phased-array head coil. Both di-

agnostic and dynamic MR imaging acquisition parameters have been detailed

in [19]. Diagnostic MRI at stroke presentation consisted of axial T2-weighted80

imaging (TR/TE = 6000/90 ms, 24×24 cm field of view, 384×384 Propeller ac-

quisition, 1.5 averages, 28×5 mm slices, 1 mm slice gap), axial fluid-attenuated

inversion recovery imaging (TR/TE/TI = 9000/153/2200 ms, 24× 24 cm field

of view, 384 × 224 acquisition matrix, 28 × 5 mm slices, 1 mm slice gap), gra-

dient echo imaging (TR/TE = 800/15 ms, 20◦ flip angle, 24 × 18 cm field of85

view, 384 × 168 acquisition matrix, 2 averages, 28 × 5 mm slices, 1 mm slice

gap) and sagittal 3D T1-weighted imaging (inversion recovery-prepared spoiled

gradient echo TR/TE/TI = 7.3/2.9/500 ms, 8◦ flip angle, 330× 214.5 cm field

of view, 256× 146 acquisition matrix, 100× 1.8 mm slices). DCE-MRI acquisi-

tions were obtained at approximately one month after first stroke presentation90

and consisted of a 3D T1w spoiled gradient echo sequence with TR=8.24ms,

TE=3.1ms, 24 × 24cm FOV, reconstruction matrix 256 × 192 and 42 × 4mm

slices. Following a pre-contrast acquisition, an intravenous bolus injection of
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Table 1: Distribution of demographics, risk factors, and imaging variables in our sample.

Values in the right column correspond to the number of patients (percentage of the total).

White matter hyperintensity values were normalised by the intracranial volumes.

Clinical variable No. patients (% of the total)

Age

[39, 49] 2 (5%)

(49, 59] 11 (26%)

(59, 69] 15 (36%)

(69, 79] 11 (26%)

(79, 89] 3 (7%)

Biological sex

Male 30 (71%)

Female 12 (29%)

Hypertension

Hypertensive 33 (79%)

Normotensive 9 (21%)

White matter hyperintensity volume

[0.07%, 1.80%] 23 (55%)

(1.80%, 3.53%] 6 (14%)

(3.53%, 5.26%] 7 (17%)

(5.26%, 6.99%] 2 (5%)

(6.99%, 8.73%] 4 (9%)

Total small vessel disease score

0 8 (19%)

1 10 (24%)

2 12 (28%)

3 7 (17%)

4 5 (12%)

0.1mmol/kg of gadoterate meglumine (Gd-DOTA, Dotarem, Guerbet, France)

was administered with the start of 20 further acquisitions with 12◦ flip angle95

and a temporal resolution of 73s, leading to a DCE-MRI duration of about 24

minutes (≈ 21 time points).

2.2. Image processing and region-of-interest sampling

We performed all image analysis blindly to clinical and permeability data.

We aligned all time points of the DCE-MRI acquisition to the 12◦ pre-contrast100

image to correct for bulk patient movement using FSL-FLIRT [20, 21]. For

determining the WMH volume percentage in intracranial volume, we applied a
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segmentation method that has been evaluated previously against manual anno-

tations in images acquired with similar scanning protocols [16]. On 150 subjects,

the average difference on ICV was 2.7% (95% CI ±7%). On 20 individuals, the105

Jaccard similarity coefficient for WMH was 0.61 (95% CI = ±0.37). In a test-

retest analysis on 14 cases comprising volunteers and patients with mild non-

disabling stroke, the coefficient of variation for repeated measurements of the

segmentation technique was 0.21 [22]. Furthermore, trained analysts double-

checked and manually edited these segmentation masks under the supervision110

of an experienced neuroradiologist.

We sampled five brain regions, comprising blood vessels [BL], CSF, deep GM

[GMD], cortical GM [GMC], and WM, using circular non-overlapping samples

that covered approximately 12mm2 in-plane and were distributed throughout

four slices [23, 24, 25], as exemplified in Fig. 2. The figure illustrates four115

slices and sampling points for one of the patients in our cohort, but it does

not indicate sampling points are fixed nor predetermined for every single pa-

tient. In fact, these spots vary to avoid areas with partial volume effects, evi-

dent contrast-enhanced related truncation artefacts, WMH, enlarged perivascu-

lar spaces, mineral depositions, lacunes and ischaemic or haemorrhagic lesions120

to avoid biasing our analysis. The samples were initially placed by a trained

analyst using Analyze 11.0 (AnalyzeDirect Inc, Mayo Clinic), edited by another

one, and, finally, agreed between both observers. We opted for sampling brain

regions to reduce the influence of the spatial densities, partial volume effects,

and avoid obvious correlations/associations as a result of descriptors encoding125

volumetric information [26].

2.3. Description of regions of interest

2.3.1. Power spectrum

We used the radial power spectrum (RPS) to account for spatial variations

in the strength of the signal frequency components. First, we sampled the signal

using the anatomical-relevant template. Second, we used the 3D discrete Fourier

transform to obtain a representation of each volume in the frequency domain.
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Table 2: Slice and sampling point selection criteria. The number in parenthesis corresponds

to the total number of sampling points per slice for a certain region of interest.

Slice Criteria Sampling points

Low Must include brainstem, carotid arteries, basi-

lar artery and superior sagittal sinus

Carotid arteries (1), basilar

artery (1), and sagittal sinus (1)

Low-middle Must include basal ganglia (i.e. caudate heads

and lentiform nuclei), thalami, third ventricle,

and horns of the lateral ventricles

Superior sagittal sinus (1), CSF

(12), GMD (12), GMC (12), and

WM (10)

Middle-high Must be two-four slices above the previous

slice in which basal ganglia are not visible, but

centrum semiovale and ventricles

Superior sagittal sinus (1), CSF

(8), GMC (6), and WM (28)

High Must be the first or second slice above the

ventricles

Superior sagittal sinus (1), GMC

(6), and WM (28)

Figure 2: Example of selected regions of interest on four slices. From left to right, low, low-

middle, middle-high, and high slices. Colour code is red, green, light blue, dark blue, and

yellow for arteries and sagittal sinus, CSF, WM, GMD and GMC, respectively.

Let I ∈ RN×N×N be a brain MR volume, the corresponding discrete Fourier

transform,

F (u, v, w) =
∑
i,j,k

I(i, j, k) exp

(
−2ιπ

ui+ vj + wk

N

)
. (1)

Third, we computed the magnitude spectra and averaged all the frequencies

over concentric rings of width 1 using the following formula

R(r) =
1

(2π)2

∫ 2π

0

∫ 2π

0

|F (r sin(θ) cos(φ), r sin(θ) sin(φ), r cos(θ))| dθdφ, (2)

where r =
√
u2 + v2 + w2, θ = cos−1(w/r), and φ = tan−1(v/u) represent the

corresponding spherical coordinates. For each time point and region of interest,130
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signals were described using 256 frequencies.

2.3.2. Grey-level co-occurrence matrix based descriptors

We measured local signal variations using metrics of homogeneity and vari-

ability extracted from grey-level co-occurrence matrices (GLCM). These ma-

trices summarise the co-appearance of intensity values in an image, i.e. they

quantify the frequency at which two intensity values occur in the same neigh-

bourhood. Mathematically speaking, a co-occurrence matrix is calculated as

follows:

C(a, b) =
∑
x∈I

∑
y∈N (x)

1, if x = a ∧ y = b

0, otherwise.
(3)

where N (x) denotes the set of voxels in the neighbourhood of x. The matrix C

reveals information of the region of interest. For instance, the higher the values

in the diagonal, the more homogeneous the region under examination.135

Haralick et al. [27] proposed various measures of homogeneity and hetero-

geneity of region of interest based on the normalised GLCM values. The process

for computing them was four-fold. First, we quantised each region of interest

in 24 grey levels. Second, we computed the GLCM using an eight-connected

neighbouring structure. Third, we normalised the GLCM by dividing each cell140

by the total number of voxel pairs. Fourth, we computed energy, contrast, cor-

relation, variance, inverse difference moment, sum average, sum variance, sum

entropy, and entropy [27], as condensed in Table 3. For each time point and

each region of interest, the number of GLCM features per patient was 9.

2.3.3. Local binary patterns descriptors145

Local binary patterns (LBP) are another visual descriptor that quantify local

signal variations. The original approximation characterises the way voxels relate

to their neighbourhood using binary codes and summarises them for the entire

region of interest using a histogram. The process is three-fold. First, the binary

code for each voxel is computed by analysing the way its intensity relates to150

the ones of its neighbours: if the value is higher than the one of its neighbour,
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Table 3: Considered texture descriptors based on the grey-level co-occurrence matrix. Ca+b(k)

represents the grey level sum distribution, expressed as Ca+b(k) =
∑

a

∑
b{C(a, b) if a+ b =

k, 0 otherwise}. SA in the sum variance formula denotes the sum average operation.

GLCM metric Brief description Formula

Contrast Overall contrast. The higher the co-occurrence of low

and high intensity values, the higher the contrast.

∑
a,b |a− b|2C(a, b)

Correlation Linear dependency between neighbouring voxels.

Values close to 1 reflect high correlation.

∑
a,b

(a−µa)(b−µb)
σaσb

C(a, b)

Energy Second angular moment measuring uniformity. En-

ergy increases with increased homogeneity.

∑
a,b C

2(a, b)

Variance Dispersion of values around the mean. Variance in-

creases with increased heterogeneity.

∑
a(a− µa)2

∑
b C(a, b)

Entropy Measurement of randomness. Higher entropy values

indicate higher heterogeneity.

−
∑
a,b C(a, b) logC(a, b)

Inverse difference

moment

Overall homogeneity. Higher values indicate higher

homogeneity.

∑
a,b

C(a,b)
1+|a+b|2

Sum average Mean grey level sum distribution value.
∑
c cCa+b(c)

Sum entropy Disorder of the sum distribution. Higher values of

sum entropy indicate higher heterogeneity.

−
∑
c Ca+b(c) logCa+b(c)

Sum variance Dispersion of values around the sum average. Higher

values of sum variance relate to higher heterogeneity.

∑
c(c− SA)2

∑
b Ca+b(c)

we assign a zero; and a one otherwise. For instance, if the voxel value is equal

to 4 and the neighbouring intensities are 1 − 2 − 3 − 4 − 5 − 6 − 7 − 8, then

the corresponding code would be 1 − 1 − 1 − 0 − 0 − 0 − 0 − 0. Second, the

frequency of each one of these codes is totalised. Third, the resulting histogram155

is divided by its sum to express probability. The normalised histogram is used

as a texture descriptor.

In this work, we considered two variants of the original approximation called

uniform local binary patterns (ULBP) [28] and local configuration patterns

(LCP) [29]. The former maps the original set of codes (28 = 256 different binary160

patterns) to a subset of 59 codes to reduce the cardinality of the histogram and

provide the descriptor with a simple rotation invariance. The latter combines

the LBP with rotation invariance and another descriptor which quantifies local

linear dependencies between a voxel and its neighbours. We calculated these
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descriptors for each region of interest for each patient using a radius equal to 1.165

For each time point and each region of interest, the number of ULBP and LCP

features per patient were 59 and 81, in that order.

2.4. Functional principal component analysis

Comparing the resulting dynamic descriptors could be an intricate task due

to the dimensionality of the problem:170

• RPS: 128 features ×21 time points ×42 patients;

• GLCM: 9 features ×21 time points ×42 patients;

• ULBP: 59 features ×21 time points ×42 patients;

• LCP: 81 features ×21 time points ×42 patients.

Conventional feature reduction approaches, such as traditional principal com-

ponent analysis (PCA) or auto-encoders, are not suitable for this problem since

the data temporality would be neglected in principle. Therefore, we resorted to

applying the functional principal component analysis (FPCA) method proposed

by Happ & Greven [30] which allows us to model each descriptor as a function

in time, reduce the time dimension respecting its nature, and obtain a single

score per principal mode of variation. In a nutshell, the idea is to reduce the

cardinality in one dimension (time) and then on another one (space). Each one

of the elements of each descriptor can be seen as a function in time. In such

a way, we could find the eigenvalues and eigenfunctions that better describe

them. Let D be the number of elements under study, P = 42 the number of

patients, and R = {R(1), ..., R(D)} the set of elements, each of them described

by the corresponding measurements, r
(j)
1 , r

(j)
2 , ..., r

(j)
P , j = 1, ..., D, the overall

process is four-fold. First, each component was centred by subtracting its mean

value. Second, eigenfunctions and scores were calculated for each component

using the FPCA. The principal component functions were obtained construc-

tively by finding orthogonal functions Φ
(j)
k , k = 1, ...,M (j), for which principal
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component scores ξ
(j)
ik , i = 1, ..., P , mathematically expressed as

ξ
(j)
ik =

∫
Φ

(j)
k (t) r

(j)
i (t)dt, (4)

maximised
∑
i ξ

(j)
ik

2
, subject to ||Φ(j)

k ||2 = 1. We set M (j) to five as resulting175

eigenvectors accounting for the 99% of the univariate variation. Third, all of

these scores ξ
(j)
ik were arranged in a matrix form, Ξ ∈ RP×

∑
M(j)

, such that

the ith row contained (ξ
(1)
i1 , ..., ξ

(1)

iM(1) , ..., ξ
(D)
i1 , ..., ξ

(D)

iM(D)). Fourth, scores were

calculated using eigenanalysis on the covariance matrix of Ξ. We resorted to

analysing the first mode of variation. The output was a single score per subject180

and per region of interest.

2.5. Validation against clinical parameters

We applied statistical tests to determine whether patients with similar health

status exhibit similar principal component (PC) scores. We used the Kruskal-

Wallis test for testing differences in PC scores between patients grouped by185

overall burden of SVD features. We considered multiple linear regression to

establish whether age, WMH volume, biological sex, and stroke lesion type

were associated with the PC scores (i.e. PC score = β0 + βAge ·Age + βWMH ·

WMH vol+βSex ·Sex+βLac ·Lac, where each β ∈ R is a standardised regression

coefficient).190

2.6. Comparison against other techniques

We compared our proposal against two surrogate measures of small vessel

dysfunction: area under the enhancement curve (AUEC) [31] and signal en-

hancement slope [32, 33]. The idea behind both approaches is as follows. The

former computes integral of the enhancement curve over time since higher accu-195

mulation of contrast agent leads to higher enhancement (thus, higher AUEC).

The latter calculates the slope of the enhancement curve (assuming linearity

after the bolus arrival peak) relates to the degree of contrast agent leakage. In

both cases, we computed the enhancement curve on the sampling points de-

scribed in Section 2.2, measured AUEC and slope, and used the statistical tests200
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in Section 2.5 to establish the relationship between these measurements and

clinical variables.

3. Experiments and results

We applied our framework to the 42 cases by segmenting each of the 42 DCE-

MRI scans, sampling the signal in each region of interest, describing signal in205

each time point and region of interest, and applying FPCA on the resulting

dynamic descriptions to analyse directions of variations within the data. We

explored whether these variations were associated with clinical variables.

We grouped the PC scores by the total SVD score and applied the Kruskal-

Wallis test to determine whether there were significant differences between210

groups. The results are displayed in Table 4. We observed significant differ-

ences using three descriptors: RPS extracted from blood vessels [low slice], deep

GM, and WM [middle-high slice] (9.28 ≤ χ2 ≤ 15.56, p-value ≤ 0.05, df = 4);

ULBP from WM [low-middle, middle-high, and high slices] (10.83 ≤ χ2 ≤ 11.45,

p-value ≤ 0.05, df = 4), and LCP from blood vessels [low slice] and WM [middle-215

high slice] (χ2 = 9.69, p-value < 0.05, df = 4 and χ2 = 10.26, p-value < 0.05,

df = 4, respectively). The other four descriptors did not vary significantly

with the overall burden of SVD in any of the tissues in any of the four slices:

signal enhancement, GLCM metrics, area under the enhancement curve, and

enhancement curve slope.220

We carried out multiple linear regression to investigate whether biological

sex, age, WMH volume, and stroke lesion type were associated with the observed

PC score. The results are condensed in Table 5. Overall, we observed that (i)

these four covariates influenced the features in blood vessels, CSF, deep GM,

and WM, but not the ones on the cortical GM region, and (ii) the analysis of225

the signal enhancement slope did not result in significant associations.

Concerning CSF, the regression results indicate that the resulting models

explained between a fifth and a fourth of the variance and were significant

predictors of the observed PC scores (p-value ≤ 0.05) in six of evaluated de-
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Table 4: Kruskal-Wallis values obtained by grouping PC scores by total SVD score. The results

are expressed concerning χ2 and Pr (p-value). The degrees of freedom were four. Enh, RPS,

GLCM, ULBP, LCP, AUEC and slope stand for signal enhancement, radial power spectrum,

grey co-occurrence matrix metrics, uniform local binary patterns, linear configuration model,

area under enhancement curve, and enhancement curve slope, respectively.

Method
Low Low-Middle Middle-High High

BL CSF BL GMD GMC WM BL CSF GMC WM BL GMC WM

Enh
χ2 4.93 3.38 4.00 3.53 3.20 6.50 2.88 4.02 3.00 8.09 4.97 7.57 5.35

Pr 0.29 0.50 0.41 0.47 0.52 0.16 0.58 0.40 0.56 0.09 0.29 0.11 0.25

RPS
χ2 10.49 7.69 2.32 15.56 8.35 5.87 5.91 7.54 10.15 9.28 6.58 6.64 8.97

Pr 0.03 0.09 0.68 0.01 0.08 0.21 0.21 0.11 0.04 0.05 0.16 0.16 0.06

GLCM
χ2 2.32 4.70 4.55 2.44 5.03 6.01 3.46 5.52 2.65 6.50 0.44 0.92 6.06

Pr 0.67 0.32 0.33 0.65 0.28 0.19 0.48 0.24 0.61 0.17 0.97 0.92 0.19

ULBP
χ2 4.31 5.16 1.00 4.41 3.25 10.83 2.17 2.52 2.72 11.45 1.06 6.54 11.09

Pr 0.37 0.27 0.91 0.35 0.52 0.03 0.70 0.64 0.61 0.02 0.90 0.16 0.03

LCP
χ2 9.69 6.57 0.55 4.19 3.85 7.56 2.59 4.62 0.98 10.26 2.64 3.78 7.76

Pr 0.04 0.16 0.97 0.38 0.43 0.11 0.63 0.33 0.91 0.03 0.62 0.44 0.10

AUEC
χ2 4.99 3.45 6.32 3.64 4.28 6.50 2.82 3.39 2.97 8.62 5.50 7.65 5.45

Pr 0.29 0.49 0.18 0.46 0.37 0.16 0.59 0.49 0.56 0.07 0.24 0.11 0.24

Slope
χ2 4.40 3.30 4.60 1.62 2.35 1.61 6.39 5.44 7.98 2.29 4.08 2.26 1.66

Pr 0.35 0.51 0.33 0.80 0.67 0.81 0.17 0.24 0.09 0.68 0.40 0.69 0.80

scriptors: signal enhancement (both low-middle and middle-high slices), RPS230

(only low-middle slice), GLCM metrics (only low-middle slice), ULBP (only

low-middle slice), LCP (only low-middle slice), and AUEC (both low-middle

and middle-high slices). Three out of four covariates, WMH volume, sex, and

stroke lesion type, were relevant predictors of the observed intensity, spectral,

texture features measured in the CSF region. WMH volume was a strong pre-235

dictor in all six models: signal enhancement (β = 0.38; p-value < 0.05), RPS

(β = −0.32; p-value = 0.05), GLCM metrics (β = 0.37; p-value < 0.05), ULBP

(β = −0.32; p-value < 0.05), LCP (β = −0.34; p-value < 0.05), and AUEC (β =

−0.38; p-value < 0.05). While biological sex contributed significantly to models

built on GLCM metrics (β = 0.40; p-value < 0.05), ULBP (β = 0.29; p-value =240

0.05), LCP (β = 0.29; p-value = 0.05), stroke lesion type appeared to be signifi-

cant predictors in the models built on RPS (β = −0.33; p-value < 0.05), ULBP

(β = −0.32; p-value = 0.05), AUEC (β = −0.36; p-value < 0.05). The age of the

patients did not seem to influence considerably the features observed in any of
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the models.245

Regarding blood vessels (carotid arteries, basilar artery, sagittal sinus), the

regression results implied strong relationships health status and observed inten-

sity and spectral features (signal enhancement, RPS, and AUEC), explaining

approximately 20% of the data variation and being significant predictors of

these models (p-value < 0.05). Signal enhancement values were associated to250

the overall burden of WMH in low-middle (β = 0.31; p-value = 0.05) and high

(β = 0.35; p-value < 0.05) slices and the biological sex of the patients in middle-

high (β = −0.30; p-value < 0.05) and high (β = −0.29; p-value = 0.05) slices.

These associations were similar for AUEC, except that the features measured

in the low-middle slices were not significant (p-value > 0.05).255

In the low-middle slice, the overall burden of WMH contributed significantly

to the observed spectral features in deep GM (β = 0.45; p-value < 0.01) and

WM (β = −0.37; p-value < 0.05), describing approximately 20% and 15% of

their variability. However, no other descriptor seemed to encode any relevant

information for these two tissues in this slice.260

Only spectral and textural features measured in the WM region in the

middle-high and/or high slices displayed relevant relationships with health sta-

tus. Model covariates explained between 14% and 36% of the variance of

RPS, GLCM metrics, ULBP, and LCP features. WMH volume contributed

significantly to the RPS features in both slices (β = −0.39; p-value < 0.05265

and β = −0.39; p-value < 0.05, respectively), ULBP in the high slice (β =

−0.40; p-value < 0.05), LCP in the both slices (β = −0.56; p-value < 0.01 and

β = 0.47; p-value < 0.01, respectively). Biological sex predicted significantly

the features of two descriptors, ULBP (β = −0.33; p-value < 0.05) and LCP

(β = 0.35; p-value < 0.05). Age significantly influenced the values of GLCM270

(β = −0.45; p-value < 0.05). Stroke lesion type did not appear relevant in any

of the models built with data from middle-high or high slices.
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4. Discussion

In this paper, we propose a framework incorporating dynamic spectral and

textural descriptors and functional principal component analysis to study dy-275

namic brain MRI signals of brain pathology. In particular, we applied our

processing pipeline to the study of SVD tissue changes using DCE-MRI acquisi-

tions. We analysed the dynamic descriptors from blood vessels, CSF, grey and

white matter brain regions of a population with features of SVD of differing

extents to examine whether subjects with different biological sex, age, WMH280

volume, stroke lesion type, and overall load of SVD features exhibited distinc-

tive patterns. To the best of our knowledge, this is the first time that these

dynamic descriptors have been examined jointly for this purpose. Of note, our

framework could be used for analysing other dynamic and non-dynamic brain

MR acquisitions, with further testing.285

Table 5: Multiple linear regression analysis between PC scores for each descriptor

and for each region of interest as response variable and age, WMH volume, biolog-

ical sex, and stroke lesion type as predictor variables. The regression results are

expressed concerning adjusted R2, Pr (p-value), and β values. Enh, RPS, GLCM,

ULBP, LCP, AUEC, and slope stand for signal enhancement, radial power spectrum,

grey co-occurrence matrix metrics, uniform local binary patterns, linear configuration

model, area under enhancement curve, and enhancement curve slope, respectively.

M
e
t
h
o
d

Low Low-Middle Middle-High High

BL CSF BL GMD GMC WM BL CSF GMC WM BL GMC WM

E
n
h

R2 0.08 0.19 0.14 0.10 0.10 0.11 0.20 0.19 0.10 0.10 0.18 0.13 0.11

Pr 0.14 0.02 0.05 0.10 0.10 0.09 0.02 0.02 0.11 0.09 0.02 0.06 0.08

PrAge 0.08 0.57 0.42 0.85 0.77 0.93 0.18 0.70 0.99 0.94 0.53 0.98 0.89

PrWMH 0.20 0.02 0.05 0.02 0.02 0.02 0.06 0.00 0.02 0.02 0.03 0.01 0.02

PrSex 0.59 0.14 0.19 0.56 0.52 0.48 0.04 1.00 0.57 0.52 0.05 0.49 0.56

PrLac 0.25 0.03 0.06 0.16 0.14 0.12 0.07 0.05 0.11 0.13 0.07 0.10 0.11

βAge -0.31 0.09 -0.14 -0.03 0.05 0.01 -0.22 0.06 0.00 0.01 -0.10 0.00 0.02

βWMH 0.21 0.38 0.31 0.40 0.38 0.39 0.29 0.46 0.38 0.39 0.35 0.41 0.40

βSex -0.08 -0.21 -0.20 -0.09 -0.10 -0.11 -0.30 0.00 -0.09 -0.10 -0.29 -0.10 -0.09

βLac 0.19 0.35 0.31 0.23 0.25 0.26 0.29 0.32 0.27 0.26 0.29 0.27 0.27

R
P

S

R2 0.15 0.17 0.07 0.20 0.11 0.15 0.11 0.04 0.07 0.15 0.21 0.12 0.15
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Table 5: Multiple linear regression analysis between PC scores for each descriptor

and for each region of interest as response variable and age, WMH volume, biolog-

ical sex, and stroke lesion type as predictor variables. The regression results are

expressed concerning adjusted R2, Pr (p-value), and β values. Enh, RPS, GLCM,

ULBP, LCP, AUEC, and slope stand for signal enhancement, radial power spectrum,

grey co-occurrence matrix metrics, uniform local binary patterns, linear configuration

model, area under enhancement curve, and enhancement curve slope, respectively.

M
e
t
h
o
d

Low Low-Middle Middle-High High

BL CSF BL GMD GMC WM BL CSF GMC WM BL GMC WM

Pr 0.04 0.03 0.15 0.01 0.09 0.04 0.09 0.24 0.16 0.04 0.01 0.07 0.05

PrAge 0.22 0.24 0.12 0.59 0.07 0.50 0.15 0.30 0.86 0.60 0.03 0.78 0.65

PrWMH 0.01 0.05 0.09 0.00 0.06 0.02 0.09 0.16 0.06 0.02 0.01 0.04 0.02

PrSex 0.25 0.14 0.27 0.09 0.38 0.09 0.66 0.58 0.36 0.10 0.73 0.16 0.11

PrLac 0.17 0.04 0.40 0.13 0.38 0.15 0.11 0.16 0.11 0.16 0.12 0.06 0.15

βAge 0.21 -0.19 0.28 -0.09 0.32 0.11 0.25 -0.18 -0.03 0.09 0.36 -0.05 0.08

βWMH -0.40 -0.32 -0.28 0.45 -0.30 -0.37 -0.28 0.23 -0.32 -0.39 -0.39 -0.33 -0.39

βSex -0.17 0.22 0.17 0.25 -0.13 -0.26 0.07 -0.09 -0.14 -0.25 0.05 -0.21 -0.24

βLac -0.22 -0.33 -0.14 0.24 -0.15 -0.24 -0.27 0.24 -0.28 -0.23 -0.24 -0.32 -0.24

G
L

C
M

R2 -0.05 0.24 -0.06 0.01 -0.05 -0.05 0.00 -0.09 -0.02 0.14 -0.02 0.05 0.08

Pr 0.72 0.01 0.79 0.39 0.75 0.69 0.40 0.94 0.52 0.05 0.55 0.22 0.13

PrAge 0.66 0.75 0.89 0.93 0.56 0.72 0.13 0.55 0.34 0.01 0.51 0.07 0.08

PrWMH 0.75 0.02 0.90 0.25 0.74 0.93 0.32 0.92 0.69 0.86 0.52 0.26 0.25

PrSex 0.26 0.01 0.33 0.13 0.87 0.40 0.55 0.96 0.87 0.06 0.17 0.39 0.04

PrLac 0.59 0.50 0.52 0.73 0.35 0.21 0.71 0.79 0.30 0.24 0.62 0.72 0.56

βAge 0.08 -0.05 -0.02 -0.02 -0.11 -0.07 -0.28 -0.11 0.17 -0.45 -0.12 -0.33 -0.31

βWMH -0.06 0.37 -0.02 0.20 0.06 0.01 0.17 -0.02 -0.07 0.03 0.11 0.19 0.19

βSex 0.19 0.40 -0.16 0.24 0.03 -0.14 0.10 0.01 -0.03 -0.28 -0.23 0.13 -0.32

βLac -0.10 -0.10 0.12 -0.06 0.17 -0.22 0.07 0.05 -0.18 -0.19 0.09 0.06 -0.10

U
L

B
P

R2 0.08 0.17 -0.09 0.09 0.08 -0.06 -0.02 -0.06 0.01 0.13 -0.04 -0.08 0.25

Pr 0.14 0.03 0.96 0.12 0.14 0.80 0.55 0.79 0.37 0.06 0.66 0.91 0.01

PrAge 0.54 0.79 0.93 0.23 0.09 0.79 0.14 0.77 0.18 0.40 0.99 0.72 0.26

PrWMH 0.20 0.04 0.90 0.54 0.76 0.47 0.43 0.40 0.52 0.01 0.48 0.48 0.01

PrSex 0.04 0.05 0.50 0.06 0.39 0.52 0.69 0.33 0.39 0.28 0.36 0.70 0.02

PrLac 0.45 0.05 0.73 0.67 0.41 0.38 0.24 0.87 0.13 0.55 0.45 0.64 0.54

βAge -0.11 -0.04 -0.02 -0.21 -0.30 -0.05 0.27 -0.05 -0.25 0.14 -0.00 0.07 -0.18

βWMH -0.21 -0.32 0.02 -0.10 -0.05 -0.12 -0.13 0.15 -0.11 -0.45 -0.12 -0.12 -0.40

βSex 0.32 0.29 0.11 0.29 -0.13 -0.11 0.06 -0.16 -0.14 -0.16 -0.15 0.06 -0.33

βLac -0.13 -0.32 -0.06 0.07 0.14 -0.16 0.21 0.03 -0.27 -0.10 0.14 -0.09 -0.09

L
C

P

R2 -0.01 0.20 -0.07 0.11 0.05 -0.06 -0.02 -0.03 -0.06 0.25 -0.02 -0.08 0.36

17



Table 5: Multiple linear regression analysis between PC scores for each descriptor

and for each region of interest as response variable and age, WMH volume, biolog-

ical sex, and stroke lesion type as predictor variables. The regression results are

expressed concerning adjusted R2, Pr (p-value), and β values. Enh, RPS, GLCM,

ULBP, LCP, AUEC, and slope stand for signal enhancement, radial power spectrum,

grey co-occurrence matrix metrics, uniform local binary patterns, linear configuration

model, area under enhancement curve, and enhancement curve slope, respectively.

M
e
t
h
o
d

Low Low-Middle Middle-High High

BL CSF BL GMD GMC WM BL CSF GMC WM BL GMC WM

Pr 0.47 0.02 0.86 0.09 0.22 0.78 0.53 0.59 0.80 0.01 0.54 0.92 0.00

PrAge 0.19 0.36 0.46 0.02 0.15 0.92 0.19 0.67 1.00 0.47 0.93 0.41 0.15

PrWMH 0.45 0.03 0.75 0.39 0.79 0.25 0.26 0.36 0.93 0.00 0.78 0.57 0.00

PrSex 0.24 0.05 0.48 0.15 0.18 0.82 0.98 0.17 0.96 0.15 0.39 0.78 0.01

PrLac 0.28 0.06 0.80 0.79 0.41 0.89 0.27 0.81 0.26 0.69 0.21 0.85 0.71

βAge -0.24 -0.15 0.14 -0.4 -0.25 0.02 0.25 0.08 0.00 0.11 0.02 -0.15 0.21

βWMH 0.13 -0.34 -0.05 0.14 0.04 0.20 -0.19 -0.16 0.02 -0.56 0.05 0.10 0.47

βSex -0.19 0.29 0.12 0.22 -0.21 0.04 0.00 0.22 -0.01 -0.20 0.14 0.05 0.35

βLac -0.19 -0.30 -0.05 -0.04 0.14 -0.02 0.20 -0.04 -0.21 -0.06 -0.22 -0.03 0.05

A
U

E
C

R2 0.10 0.20 0.12 0.10 0.11 0.11 0.21 0.19 0.10 0.10 0.19 0.13 0.11

Pr 0.10 0.02 0.08 0.10 0.08 0.09 0.01 0.02 0.10 0.09 0.02 0.06 0.08

PrAge 0.06 0.57 0.48 0.85 0.87 0.94 0.17 0.70 1.00 0.94 0.52 0.99 0.89

PrWMH 0.14 0.02 0.07 0.02 0.01 0.02 0.06 0.00 0.02 0.02 0.02 0.01 0.01

PrSex 0.58 0.14 0.05 0.56 0.61 0.48 0.04 0.99 0.57 0.52 0.05 0.49 0.55

PrLac 0.25 0.03 0.26 0.16 0.13 0.12 0.07 0.04 0.10 0.13 0.06 0.10 0.11

βAge 0.33 -0.09 0.12 0.03 0.03 -0.01 0.22 -0.06 0.00 -0.01 0.11 -0.00 -0.02

βWMH -0.24 -0.38 -0.30 -0.40 -0.41 -0.39 -0.29 -0.46 -0.38 -0.39 -0.36 -0.41 -0.40

βSex 0.08 0.21 0.31 0.09 0.08 0.11 0.31 -0.00 0.09 0.10 0.29 0.10 0.09

βLac -0.19 -0.36 -0.18 -0.24 -0.25 -0.26 -0.29 -0.33 -0.27 -0.26 -0.30 -0.27 -0.27

S
lo

p
e

R2 0.02 0.01 -0.09 -0.05 -0.02 0.04 0.05 -0.00 0.02 0.10 0.03 0.07 0.01

Pr 0.33 0.35 0.93 0.69 0.51 0.26 0.20 0.42 0.34 0.10 0.28 0.16 0.39

PrAge 0.14 0.54 0.93 0.29 0.18 0.67 0.48 0.91 0.24 0.07 0.69 0.01 0.34

PrWMH 0.93 0.44 0.88 0.33 0.50 0.68 0.37 0.21 0.32 0.39 0.24 0.59 0.68

PrSex 0.60 0.13 0.86 0.53 0.30 0.92 0.34 0.67 0.10 0.05 0.47 0.73 0.13

PrLac 0.55 0.71 0.40 0.97 0.62 0.04 0.09 0.26 0.98 0.39 0.07 0.22 0.35

βAge -0.27 -0.11 0.02 -0.20 -0.25 -0.08 -0.12 0.02 -0.21 -0.32 0.07 -0.46 -0.17

βWMH -0.01 -0.13 0.03 0.17 0.11 0.07 0.15 -0.22 0.17 0.14 0.20 0.09 0.07

βSex 0.08 0.24 0.03 0.10 0.17 -0.02 -0.15 0.07 -0.27 0.30 -0.11 -0.05 0.25

βLac 0.10 0.07 0.16 -0.01 -0.09 -0.37 0.30 0.20 0.00 -0.14 0.32 -0.21 -0.16
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Most of the features extracted from the CSF cavities near the choroid plexus

(low-middle slice) were significantly associated with the biological sex or stroke

lesion type, and the overall burden of WMH. We observed that the overall en-

hancement in the CSF cavities increased if patients were female or had a lacunar290

stroke, and with decreasing WMH burden. In accordance with previous find-

ings [10], we observed a relationship between burden of features of SVD and

leakage of Gadolinium-based contrast agent into CSF. However, our results sug-

gest that the CSF enhancement might be inversely proportional to the burden

of WMH. Bigger sample size and further testing are needed to determine the di-295

rection of the relationship. Our framework found features correlated with WMH

burden and, as increased WMH load is known to be associated with blood-brain

barrier leakage [9], our proposal shows promise for studying subtle small vessel

dysfunction.

We observed that surrogate measures of small vessel disruption extracted300

from the signal enhancement curve, such as area under the enhancement curve,

could capture relevant information linked with the health status of the patients,

but some of the texture and spectral descriptors were more sensitive to variations

in the deep GM or WM. In fact, we noticed that while both the slope and

area under the enhancement curve measurements in WM did not reflect the305

health status significantly, but spectral and texture descriptors did. This might

be a consequence of spectral and texture descriptors taking into account and

encoding neighbouring relationships. The power spectrum reflected information

associated with overall WMH burden in blood vessels, CSF, deep GM, and WM;

being an encouraging outcome since it shows the analysis of the power spectra310

is more descriptive than current semi-quantitative surrogates of dysfunction.

The current proposal exhibits two drawbacks: the region sampling strategy

and the generalisability. First, region sampling prevents descriptors from encod-

ing volumetric information, but sample selection is tedious and not resilient to

motion. Due to the prolonged scanning process, brain DCE-MRI acquisitions315
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are prone to head motion artefacts. In small vessel dysfunction assessments,

imaging artefacts confound whether tenuous enhancements are a consequence

of subtle blood-brain barrier abnormalities and, although the repercussions of

motion have not been documented for this particular problem, we believe that

they compromise both the interpretation and subsequent result interpretation.320

Notwithstanding that we realigned all time points to the pre-contrast scans to

correct for bulk patient movement, this approximation does not compensate

for possible information loss or k-space dephasing due to motion. Second, the

imaging protocol influences the features that are captured by the different de-

scriptors as none of them is scale-invariant in principle and also the synthesis325

step as lower temporal resolution results in less information in the time domain.

Even though the acquisition protocol was fixed in this study, their application

to multi-centre studies might be restricted.

Future work should contemplate finding automatically anatomically-relevant

regions proximal to arterial territories or in which signal to noise ratios are the330

highest. In such a way, we could enlarge our sample size to (i) draw stronger

conclusions, (ii) establish clearer links between computer vision descriptors and

underlying physiopathological processes, and (iii) determine whether these de-

scriptors are useful in dysfunction classification problems. Additionally, the

current proposal needs to be tested on diagnostic sequences and pre- vs post-335

contrast analyses to examine whether they capture dysfunction-related infor-

mation.

Our findings add confidence to previous studies in which DCE-MRI signals

from patients with different age, health status, and premorbid brain condition

exhibited different tendencies [26, 33]. Our proposed framework seems promising340

and feasible, but it needs further testing on a larger sample and on pre- vs post-

contrast and cross-sectional studies.
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